Chemical Engineering Thermodynamics
 Quiz 9

March 14, 2019
In Homework Problem 8.14 an isolated chamber was considered with rigid walls that is divided into two compartments of equal volume with one compartment under a perfect vacuum.
Consider a nonideal gas at $\mathbf{1 0} \mathbf{M P a}$ and $\mathbf{3 0 0} \mathbf{K}$ fills the second compartment. After the partition is ruptured and a long time passes the temperature and pressure are uniform in the two chambers. Find the final $\boldsymbol{T}_{\mathrm{f}}$ and $\boldsymbol{P}_{\mathrm{f}}$ using an ideal gas at 10 MPa and 300 K as the reference state.

Equation of State: $Z=1-a P /\left(R T^{2}\right)$

$$
\mathrm{a}=20,000 \mathrm{~cm}^{3} \mathrm{~K} / \mathrm{mole}
$$

Ideal Gas Heat Capacity: $C_{\mathrm{p}}{ }^{\mathrm{ig}}=15 R$ (for i.g. $C_{\mathrm{V}}{ }^{\mathrm{ig}}=C_{\mathrm{p}}{ }^{\mathrm{ig}}-R$)
$\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{K}$ mole $)$

$$
\left(\frac{H-H^{i g}}{R T}\right)=-\int_{0}^{P} T\left(\frac{\partial Z}{\partial T}\right)_{P} \frac{d P}{P} \quad\left(\frac{S-S^{i g}}{R}\right)=-\int_{0}^{P}\left[(Z-1)+T\left(\frac{\partial Z}{\partial T}\right)_{P}\right] \frac{d P}{P}
$$

a) Give an energy balance for this problem. (Circle your answer)
b) Derive a formula for the necessary departure function. (Circle your answer)
c) Write an expression for U^{f} - U^{i} that can be used in an excel sheet. (Circle your answer)
d) Determine $\boldsymbol{T}_{\mathrm{f}}$ and $\boldsymbol{P}_{\mathrm{f}}$. (List the steps used in Excel to solve for these values and obtain the values. Give the equations used to determine the two unknowns.) (Circle the final values.)
e) Explain the need for the departure function. That is, why do we need the departure function to solve this problem?

ANSWERS:

Chemical Engineering Thermodynamics Quiz 9
March 14, 2019
a) Give an energy balance for this problem.
$\Delta U=0$ or $U^{\mathrm{f}}=U^{\mathrm{i}}$
b) Derive a formula for the necessary departure function.
$\mathrm{U}=\mathrm{H}-\mathrm{PV}($ from the thermodynamic square $)$
$\begin{aligned} & \left(U-U^{\mathrm{ig}}\right) /(\mathrm{RT})=\left(H-H^{\mathrm{ig}}\right) /(\mathrm{RT})-\mathrm{Z}+1 \\ & \frac{\left(U-U^{i g}\right)}{R T}=-\int_{0}^{P} T\left(\frac{\partial Z}{\partial T}\right)_{P} \frac{d P}{P}-Z+1 \\ & \left(\frac{\partial Z}{\partial T}\right)_{P}=\frac{2 a P}{R T^{3}} \\ & \frac{\left(U-U^{i g}\right)}{R T}=-\frac{2 a P}{R T^{2}}-1+\frac{a P}{R T^{2}}+1=-\frac{a P}{R T^{2}} \\ & \left(U-U^{i g}\right)=-\frac{a P}{T}\end{aligned}$
c) $U^{T, P}=\int_{300 K}^{T} C_{V}^{i g} d T+\left(U-U^{i g}\right)^{T, P}$

$$
U^{i}=-\frac{a P^{i}}{T^{i}}=-667 \frac{\mathrm{~J}}{\mathrm{~mole}}
$$

$$
U^{f}=C_{V}\left(T_{f}-300 \mathrm{~K}\right)-\frac{a P^{f}}{T^{f}}=116 \frac{\mathrm{~J}}{\operatorname{mole~K}}\left(T_{f}-300 K\right)-\frac{20,000 \frac{\mathrm{~cm}^{3} \mathrm{~K}}{\mathrm{~mole}} P^{f}}{T^{f}}
$$

$$
\begin{equation*}
\left(U^{f}-U^{i}\right)=116 \frac{\mathrm{~J}}{\operatorname{mole~K}}\left(T_{f}-300 \mathrm{~K}\right)-\frac{20,000 \frac{\mathrm{~cm}^{3} \mathrm{~K}}{\mathrm{~mole}} P^{f}}{T^{f}}+667 \frac{\mathrm{~J}}{\mathrm{~mole}}=0 \tag{1}
\end{equation*}
$$

d) Determine $\boldsymbol{T}_{\mathrm{f}}$ and $\boldsymbol{P}_{\mathrm{f}}$

Make 4 cells in Excel, T^{f}, P^{f}, Equation (1) and the EOS (2), below

$$
\begin{aligned}
& V^{i}=\frac{R T^{i}}{P^{i}}-\frac{a}{T^{i}}=\frac{8.31 \frac{\mathrm{~cm}^{3} \mathrm{MPa}}{\mathrm{~mole} \mathrm{~K}} 300 \mathrm{~K}}{10 \mathrm{MPa}}-\frac{20,000 \frac{\mathrm{~cm}^{3} \mathrm{~K}}{\mathrm{~mole}}}{300 \mathrm{~K}}=182 \frac{\mathrm{~cm}^{3}}{\mathrm{~mole}} \\
& V^{f}=2 V^{i}=365 \frac{\mathrm{~cm}^{3}}{\mathrm{~mole}} \\
& 0=R T^{f}-\frac{a P^{f}}{T^{f}}-P^{f} V^{f}
\end{aligned}
$$

$$
\begin{equation*}
0=8.31 \frac{\mathrm{~cm}^{3} \mathrm{MPa}}{\text { mole K }} T^{f}-\frac{20,000 \frac{\mathrm{~cm}^{3} \mathrm{~K}}{\text { mole }} P^{f}}{T^{f}}-P^{f} 365 \frac{\mathrm{~cm}^{3}}{\text { mole }} \tag{2}
\end{equation*}
$$

Use solver varying T^{f} and P^{f} to obtain 0 for the two equations.
$T^{\mathrm{f}}=\mathbf{2 9 7} \mathrm{K}$ and $P^{\mathrm{f}}=\mathbf{5 . 7 2} \mathrm{MPa}$
e) Explain the need for the departure function. That is, why do we need the departure function to solve this problem?
C_{p} is only available for the ideal gas state and C_{v} can only be easily calculated from C_{p} in the ideal gas state, $C_{\mathrm{V}}{ }^{\mathrm{ig}}=C_{\mathrm{p}} \mathrm{ig}-R$. So we need to do temperature and pressure changes in the ideal gas state.

